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A method of recovering the thermal flux acting on a sensing element with re- 
spect to measurements of sensing element signals is described. 

Determination of nonstationary one-dimensional thermal fluxes based on temperature meas- 
urements at two different points of a component part along the flux constitutes an important 
practical problem. The solution of such problems is prompted by the need for information on 
the actual values of the energy density entering parts of various power plants, which is used 
as a basis for determining the direction of process control; moreover, measurement of the 
energy density may be treated as an independent problem. In the simplest case, the necessary 
information can obviously be obtained by means of two temperature sensors, for instance 
thermocouples, which are placed in a part at a certain distance from each other along the en- 
ergy flow. However, difficulties arise in determining the coordinates of the temperature 
measurement point, and a priori determination of the direction of the energy flux vector is 
problematic, These errors can be reduced to a considerable extent by placing the thermo- 
couples on a special part, which is usually referred to as the thermal flux data unit. This 
part, for instance, may consist of a disk with an assigned diameter-to-thickness ratio [I]. 

If the side surfaces are heat insulated, so that the thermal resistance in the axial 
direction is much lower than in the radial direction, the temperature field in the axial zone 
would be close to a uniform field if the energy flux through the heat-absorbing surface of the 
disk is uniform. In constructing the thermal flux data unit, high accuracy in determining the 
location of the thermocouple junction can be secured [2]. 

Figure 1 shows the schematic diagram of such a thermal flux data unit. It consists of a 
flat differential thermocouple with an intermediate thermoelectrode 1 and two external thermo- 
electrodes 2. The side surface of the differential thermocouple is covered with a heat-in- 
sulating material 3. 

Measurements performed by means of such a data unit make it possible to calculate the 
thermal flux through its surface. If the heat loss through the side surface of the data unit 
is neglected, the temperature field can be determined by considering the model problem of heat 
propagation in an infinite plate, --Z < x < Z. If we know the temperature at one of the plate's 
boundaries and at some point inside it, we can determine the thermal flux density q(t) through 
the other plate boundary. 

If the temperature at one of the plate boundaries is T(Z, t) = F(t), and the thermal flux 
through the other boundary is q(t), the thermal field inside the plate T(x, t) satisfies the 
thermal conductivity equation [3-5], 
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Fig. i. Schematic diagram of the gradi- 
ent thermal flux data unit. 
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for the initial condition 

T(x, O) = G (x) (2) 

and t h e  boundary  c o n d i t i o n s  

T(l, t )=F(t) .  --k OT(--I, t) - q(t). (3) 
Ox 

The boundary  c o n d i t i o n s  (3) o f  t h e  above b o u n d a r y - v a l u e  p rob lem a r e  nonhomogeneous.  In  
order to use the Fourier method for solving this problem, we shall reduce it to a problem 
with zero boundary conditions [3]. We introduce the function +(y, r): 

(y, ~) = (D (y, "0 + F (z) -t- / q ('0 (1 - -  T g), (4  ) 

which satisfies the equation 
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Thus, using substitution (4), we obtain the nonhomogeneous equation of thermal conductiv- 

ity (5) with zero boundary conditions (6). 

The solution of the boundary-value problem (1)-(3) is given by 
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Using the obtained analytical solution, we can calculate the temperature T(y, T) at an 
arbitrary point y of the plate for the assigned initial and boundary conditions. 

For the measured temperature values at the boundary and at a certain point y of the 
plate, this solution makes it possible to obtain a Volterra integral equation of the first 
kind with respect to the thermal flux: 
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The thermal flux q(T) was calculated by means of the following recurrent formulas: 
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It should be noted that the above recurrent relationships hold if the variation of 3q(T)/ 
aT during a time of the order of T~ is negligible. 

It is most often found in practice that the temperature difference at the plate surfaces 
is much smaller than the absolute values of these temperatures. If the above problem is to 
be solved in terms of the temperatures proper, it would be necessary to perform operations 
with relatively large numbers, while only differences between them affect the calculation re- 
sults. In such cases, it would be advisable to operate only with excess temperatures, i.e., 
TI(T) -- To and Ta(T) -- To, and determine these quantities in experiments. 

Let us estimate the effect of the initial conditions on the temperature inside the plate. 
The initial conditions are comprised in the coefficient an(0). The characteristic time of 
damping of the initial conditions is to = i/I~ = (41/aw) 2 For our problem, k ~= 25 W/m-deg, 
p = 8.9.103 kg/m 3, y = 410 J/kg,deg. For t >> to, the effect of the initial conditions can 

be neglected. 

The accuracy of the results is affected by errors in assigning the data unit's dimen- 
sions and the location of the junction point and the errors in temperature measurements. 

Assume that 6~ is the error in measuring the plate thickness and 6x is the error of the 
junction location coordinate; 
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and the relative error in the flux value is then given by 
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Fig, 2. Dynamics of temperatures at the 
sensing element surfaces and of the ther- 
mal flux recovered on the basis of these 
temperatures. 

where ~ and B are approximately equal to unity, Hence it follows that, for y values close to 
i, the relative error in calculating the flux exceeds considerably the error in measuring the 
data unit' s dimensions. 

The flux error caused by inaccuracies in temperature measurements is given by 

8qN k l + n f ~  ST, 
l 1 -- n[j~ 

where 6T is the temperature error, and n - I/zll fL and fk are of the same order, so that the 
coefficient in front of 6T is equal to about I s whence it follows that the flux errors are of 
the same order as the errors in assigning the excess temperature. 

Our analysis shows that the farther the temperature measurement point from the heat-ab- 
sorbing surface, the smaller the temperature fluctuation amplitude (for the same amplitude of 
the thermal flux density and its variation frequency) and, consequently, the larger the rela- 
tive error in determining (assigning) this temperature in experiments which, naturally, in- 
creases the error of recovery of the thermal flux density. 

Moreover, data on the thermal flux density cannot be obtained directly at any instant of 
time, since the data unit's temperature reaction to a change in the energy density at its 
boundary lags in time behind this change, the more so the farther the temperature measurement 
point from the surface, i.e., the temperature field of the plate obtained with respect to the 
temperatures measured at a given instant of time can be used to determine the energy density 
at the boundary that had occurred somewhat earlier. 

The inertia of the material layer above the temperature measurement point can often be 
neglected (6 § 0)~ in which case the temperature measurement point virtually lies on the heat- 
absorbing surface. Such an approximation is ordinarily used for determining the density of 
thermal fluxes that vary relatively slowly. 

As an example, Fig. 2 shows the dynamics of temperatures at the sensing element surfaces 
in a thermal flux data unit during the startup from cold of a power plant. These temperatures 
have been calculated with respect tO one of the temperatures and the temperature difference 
between the surfaces, measured by means of the data unit. The figure also shows the variation 
in time of the thermal flux density, calculated by means of the proposed method. 

In this case, the error in finding the thermal flux density is determined by the error 
in measuring the temperature and the frequency of temperature measurements [6]. Since the 
temperature measurements are performed with a frequency of 25 Hz, all information at frequen- 
cies above 12.5 Hz is filtered out, and we can only recover thermal flux densities at frequen- 
cies below 12.5 Hz. The error in recovering these densities and the temperature measurement 
error are of the same order of magnitude. 

NOTATION 

k, thermal conductivity coefficient; a 2, thermal diffusivity coefficient;y, specific 
heat; p, density; r = (a~/l)=t, dimensionless time; y = x/l, dimensionless coordinate; Tl(t), 
temperature at the top boundary; T=(t), temperature of the heat-absorbing surface; To, refer- 
ence temperature; t, time (sec); q, thermal flux density (W/m=); T, temperature (~ 
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